ワ ー ク シ ョ ッ プ 講 演 テ ー マ ー 覧

□		テ ー マ 名	講師(所属、	氏 名)
	第 48	回 超伝導磁気分離に関するワークショップ ― 環境改善と資源循環利用 ―		
		平成 12 年 11 月 16 日(木) 化学会館 5 階 大会議室		
48	1.	開会の挨拶	東京大学	北澤 宏一
48	2.	超伝導マグネットを用いた磁気分離・我国の研究開発動向	電子技術総合研究所、	小原 健司
			金属材料技術研究所	
48	3.	強磁場利用水溶液フェライト化反応による前処理技術	東京工業大学	玉浦 裕
48	4.	環境改善への応用 一 電気化学的手法を組み合わせた埋め立て地浸出水の浄化 一	東京都立大学	渡辺 恒夫
48	5.	超伝導高匂配磁気分離の資源循環への応用の試み	大阪大学	西嶋 茂宏
		―湖沼のアオコ、流出重油、無機砥粒、染料、海水中金属イオンへの応用―		
48	6.	欧州での超伝導磁気分離の新しい展開	英国サザンプトン大学	James. H. P. Watson
48	7.	米国での超伝導磁気分離研究開発の動向	米国マイクロマグ社	Peter G. Marston
48	8.	地熱水の安全な利用を目指した砒素除法への応用	岩手大学	中澤 廣
48	9.	超伝導HGMS実験と計算機シミュレーション	(財)いわて産業振興センター	岡田 秀彦
48	10.	半導体工場における無機懸濁廃液の清澄機開発	(株) T K X	堀江 新一
48	11.	高温超伝導バルク体を適用した水浄化用膜磁気分離技術	㈱日立製作所	佐保 典英
48	12.	今後の期待と課題(討論)	湘南工科大学	萩原 宏康
48	13.	まとめと挨拶	岩手大学	能登 宏七
1				

	第 49	回 次世代高温超伝導線材の開発 - Y 1 2 3 線材の長尺化に向けて-		
		平成13年3月5日(水) 蔵前工業会館 8階大会議室		
49	1.	開会の挨拶	東海大学	太刀川 恭治
49	2.	日本における Y-123 線	超電導工学研究所	塩原 融
49	3.	米国における Y-123 線	ロスアラモス国立研究所	J. O. Willis
49	4.	欧州における Y-123 線	ゲッチンゲン大学	H. C. Freeyhardt
49	5.	イオンビームアシスト法	㈱フジクラ	飯島 康裕
49	6.	改良バイアスパッタ法	金属材料技術研究所	福富 勝夫
49	7.	表面酸化エピタキシー法	京都大学	松本 要
49	8.	集合組織銀基板法	鹿児島大学	土井 俊哉
49	9.	塗布熱分解法	超電導工学研究所	山田 穣
	年 [0	同 - 切に道葉時世後の英見してしなし ローカス 内田		
	第 50			
		ーマイクロウェープ用部品を中心としてー 平成 13 年 10 月 19 日(金)		
50	1	平成 15 平 10 月 19 日(金)	 東京工業大学	 山路 昭彦
50		トライフェーズエピタキシー:単結晶薄膜作製の新技術	東京工業大学	四º º º º
50	3.	高品質超伝導薄膜とエレクトロニクス応用(PLD 作製膜)	大阪大学	
50	3. 4.	同の負担仏等専族とエレクトロークへ心角(FLD 作衆族) 化学プロセスによる超伝導薄膜成長	八 <u>級</u> 八子 超電導工学研究所	
50	4. 5.	化子ノロビヘによる起伝等海膜成長 MgB。薄膜作製とエレクトロニクス応用の可能性	NTT 物性科学基礎研究所	平林
50	6.	アンテナ応用と大面積薄膜	山形大学	内藤 カス 大嶋 重利
50	7.			八鴨 単刊 橋本 龍典
50	8.	第4世代移動体通信と超伝導技術	M R C 名古屋大学	
50	٥.	另 4 世刊/夕期/P进信 C 起伍等仅例	河 白 <u>户</u> 八 白 <u>户</u> 人	膝包 切

	第 51 回 超伝導電力応用電力機器の開発		
	平成14年1月16日(水) 大阪コロナホテル 本館 3階 301号		
51	1. はじめに	関西電力㈱	今井 義博
51	2. 電力系統の課題と超伝導応用電力機器	(財)電力中央研究所	谷口 治人
51	3. 超伝導発電機の開発	超伝導発電関連機器・材料	西嶋 健一
		技術研究組合	
51	4. 超伝導交流機器の開発	超伝導発電関連機器・材料	植田 清隆
		技術研究組合	
51	5. 超伝導線材の進歩とケーブルの分野への適用の現況	住友電気工業㈱	畑 良輔
51	6. 超伝導フライホールの開発	(財)国際超電導産業	富田 充
		技術研究センター	
51	7. 超伝導エネルギー貯蔵装置の開発	中部電力㈱	長屋 重夫
	第 52 回 単一磁束量子が拡げる極限情報処理の世界		
	平成 14 年 2 月 22 日(水) 蔵前工業会館 8 階 大会議室		
52	1. 開会ご挨拶	名古屋大学	早川 尚夫
52	2. ご挨拶	文部科学省	藤島 信夫
52	3. 研究体制及び研究内容の総括	日本電気㈱	田原修一
	第1部 SFQ を用いた極限情報処理:将来の情報インフラを支えるハイエンドデジタル		
	システムコア技術への展開		
52	4. 大規模システムを可能にする基盤技術と展望	名古屋大学	藤巻朗
52	5. SFQ-半導体システム間高速インターフェース技術	富士通㈱	原田 直樹
52	6. SFQ ランダムアクセスメモリ技術	超電導工学研究所	永沢 秀一
52	7. コアノードルータシステムへの展開: SFQ パケットスイッチ	日本電気 (株)	萬 伸一
52	8. 省エネルギー・ハイエンドサーバーへの展開: SFQ マイクロプロセッサ	横浜国立大学	吉川 信行
	第2部 SFQ を用いた極限情報処理:超高速フロントエンドシステムへの展開		
52	9. 電波望遠鏡システム向け SFQ-AD 変換器	産業技術総合研究所	東海林 彰
52	10. 広帯域ワイヤレスシステム向け広帯域 AD 変換器	㈱ 日立製作所	高木 一正
	第3部 SFQ を用いた基本回路モデルのコンセプトと展開		
52	11. 設計容易な回路モデル Boolean SFQ 論理回路	東京大学	岡部 洋一
52	12. ユニバーサル倫理ゲート:位相モード倫理回路	東北大学	小野美 武
52	13. クロック分配技術と SFQ 回路の性能	日本女子大学	黒沢格
52	14. 閉会ご挨拶	名古屋大学	早川 尚夫

	第 53 回 新金属系超伝導線材の研究開発の進展		
	平成14年2月25日(月) 物質·材料研究機構 千現地区 第1会議室		
	第1部 基調講演		
53	1. Recent Trends and Achievements in R&D of Practical Metallic Superconductors in Japan	物質·材料研究機構	井上 廉
53	2. Nb ₃ Al, PIT Nb ₃ Sn, and MgB ₂ Conductor Development	オハイオ州立大学	M. D. Sumption
53	3. Novel Low Cost Nb-based Superconducting Multifilamentary Conductors	ケンブリッジ大学	B. A. Glowacki
	In-situ and Ex-situ MgB ₂ Wires for DC and AC Applications		
	第2部 金属系超伝導線材の応用と展望		
53	4. 高分解能 NMR スペクトロメータ	物質·材料研究機構	木吉 司
53	5. 核融合炉用超伝導線	日本原子力研究所	安藤 俊就
53	6. 金属系超伝導体の加速器応用	高エネルギー研究所	和気 正芳
	第3部 先進金属系超伝導線材の開発と課題		
53	7. RHQT 法 Nb ₃ Al 線材の現状	物質·材料研究機構	竹内 孝夫
53	8. 急熱急冷法 Nb ₃ Al 線材における第3元素添加	物質·材料研究機構	菊池 章弘
53	9. Recent Topics on the Metallic Superconductor Research in Tokai University	東海大学	太刀川 恭治
53	10. 高磁界マグネット用 Ta-FRS-Nb ₃ Sn 線材について	産業技術総合研究所	梅田 政一
	第4部 メーカーにおける金属系超伝導線材の開発状況		
53	11. 日立電線における金属系超伝導線材の開発状況	日立電線傑	岩城 源三
53	12. 三菱電機における内部拡散法 Nb ₃ Sn 超伝導線材の開発	三菱電機㈱	江川 邦彦
53	13. 神戸製鋼所 Nb ₃ Sn 超伝導線材の開発	㈱神戸製鋼所	宮崎 隆好
53	14. 古河電工におけるブロンズ法 Nb ₃ Sn 線材の開発状況	古河電気工業㈱	遠藤 壮
	第5部 MgB ₂ 超伝導線材の開発と課題		
53	15. パウダー・イン・チューブ法による MgB ₂ 線材の開発	物質·材料研究機構	熊倉 浩明
53	16 . 欧州における \mathbf{MgB}_2 線材開発動向からスイス、ドイツ、英国、イタリアの最近の状況	超電導工学研究所	山田 穣
53	17. 金属テープ及び Si 上のプリカーサー・アニール MgB_2 薄膜	物質·材料研究機構	福富 勝夫

第 54 回 実用N b T i 超伝導線材の市場動向		
平成14年11月7日(木) 蔵前工業会館 8階大会議室		
第1部 基調講演		
1. 挨拶	研究会会長	太刀川 恭治
2. はじめに	(株) 東芝	高野 廣久
3. Nb-Ti インゴットの生産状況と将来展望	Wah Chang	Mr. Gary Kneisel
4. Nb-Ti 超伝導線の製造工程-LHC 用超伝導線の製造を例として-	古河電気工業(株)	木村 昭夫
5. MRI 用 Nb-Ti 超伝導線材市場の現状と将来	オックスフォート゛・ インストゥルメンツ(株)	Mr. Tony Ford
6. NMR 用 Nb-Ti 超伝導線材市場と線材に求められる性能	ジャパンスーパーコンダクタ(株)	村上 幸伸
7. アルミ安定化 Nb-Ti 超伝導導体応用の現状と今後の展開	高エネルギー加速器研究機構	山本 明
8. SMES 用 Nb-Ti 超伝導導体の開発と今後の展開	核融合科学研究所	三戸 利行
第 55 回 超強磁場NMR装置の開発とNMR計測結果		
平成14年12月10日(火) 理化学研究所 横浜研究所 研究交流棟1階		
1. はじめに	研究会会長	太刀川 恭治
2. 理研 GSC におけるタンパク質研究と NMR	理科学研究所/東京大学	横山 茂之
3. 機能性材料研究における超強磁場固体 NMR の重要性	物質材料技術研究所	丹所 正孝
4. 米国における大口径900MHzNMR磁石の開発	NHMFL	Denis Markiewicz
5. 900MHzNMR- 磁石	Oxford Instruments	清水 道夫
6. 900MHzNMR-NMR基本計測	Varian	串田 克彦
7. 900MHzNMRとクライオプローブ	Bruker Biospin	山本 昭彦
8. 920MHzNMR-磁石開発	物質材料技術研究所	木吉 司
10. 9 2 0 MH z NMR-NMR 基本計測	JEOL	栗原 範明
11. NMR 技術開発の最先端	物質材料技術研究所	清水 禎

第 56 回 ビスマス系線材の新展開一Jc の一桁向上を目指して		
平成15年3月14日(金) 物質・材料研究機構、千現地区第1会議室		
1. 開会挨拶	研究会会長	太刀川 恭治
Jc の一桁向上のためには何をすればよいか (材料サイドからの提言)		
2.	物質・材料研究機構	熊倉 浩明
3.	東京大学	下山 淳一
4.	京都大学	長村 光造
5.	住友電気工業	佐藤 謙一
6.	昭和電線電纜	西岡淳一
Jc の向上によって何が可能になるか (ユーザーサイドからの提言)		
7.	中部電力	平野直樹
8.	九州大学	岩熊成卓
第 57 回 進む MgB2 超伝導体の線材化研究		
平成15年12月11日(木) 日本科学会 化学会館 501会議室		
1. 挨拶	研究会会長	太刀川 恭治
2. 材料面からみた MgB2 超伝導体の特長	物質・材料研究機構	熊倉 浩明
3. バルク材ならびに線材の Jc 特性	東京大学	下山 淳一
4. in situ 法 situ 法線材の作製と特性	物質・材料研究機構	松本 明善
5. in 線材の新製法	物質·材料研究機構	菊池 章弘
6. ex situ 法線材の金属粉末添加効果	東海大学	山田 豊
7. MgB2 線材の開発とその応用 (その1)	JR 東海	平川 正澄
8. MgB2 線材の開発とその応用 (その2)	日立製作所	岡田 道哉

第 58 回 超電導応用と冷凍・冷却技術		
平成16年2月13日(金) 産業技術総合研究所 臨海副都心センター会議室(4階)		
1. 開会の挨拶	研究会会長	太刀川 恭治
2. 超伝導デバイスから見た冷凍機への要求仕様	山形大	大嶋 重利
3. 産業応用から見た冷凍機への要求仕様	JASTEC	広瀬 量一
4. 小型冷凍機開発の現状と今後	物質・材料研究機構	松本 明善
5. 超電導デバイスと冷凍機を繋ぐインターフェース技術	住友重機	佐藤 敏美
6. 超電導マグネットと冷凍機を繋ぐインターフェース技術	大陽東洋酸素	上岡 泰晴
7. 総合討論	豊橋技科大	廿日出 好
	東芝	栗山 透
	理研	前田 秀明
第 59 回 最新の新超伝導体探索研究		
平成16年10月26日(火) 日本化学会 化学会館		
1. 開会の挨拶	研究会会長	太刀川 恭治
2. 新たな超伝導体発見の意義	物質・材料研究機構	室町 英治
3. 水和コバルト酸化物系超伝導体	物質・材料研究機構	高田 和典
4. パイロクロア系超伝導体	東京大学物性研	廣井 善二
5. 磁場誘起超伝導体	物質・材料研究機構	宇治 進也
6. ノンドープ系高温超電導体	東京農工大学	内藤 方夫
7. ダイヤモンド超伝導体	物質・材料研究機構	高野 義彦
8. 14K有機超電導体	埼玉大学	谷口 弘三
9. 総合討論		
第60回 SFQ(単一磁束量子)回路はブレークスルーとなり得るか		
平成16年12月6日(月) 商工会館 6G会議室		
1. 開会の挨拶	研究会会長	太刀川 恭治
2. SFQ回路作製プロセスの現状と将来展望	国際超伝導産業技術研究センター	日高 睦夫
3. SFQ回路設計技術の現状と将来展望	国際超伝導産業技術研究センター	亀田 義男
4. スーパーコンピュータ用デバイスとしての可能性	横浜国立大学	吉川 信行
5. ネットワークスイッチへの展開	国際超伝導産業技術研究センター	萬 伸一
6. A/D変換器を中心とした信号処理回路応用	名古屋大学	藤巻 朗
7. 量子検出器用信号処理回路としての期待	理化学研究所	清水 裕彦
8. CMOS LSI 技術の将来と新デバイスへの期待	東京大学	鳥海 明

第 61 回	超伝導体の電力応用と機器開発の現状		
	平成17年2月7日(月) 大阪コロナホテル 本館3階 310号室		
1. 開会	会の挨拶	研究会会長	太刀川 恭治
2. 超伝	云導電力応用機器開発の現状について	Super-GM	安田 健次
3. 50	Om超伝導ケーブルの開発状況	古河電気工業	向山 晋一
4. 米国	国における超伝導ケーブルの開発状況	住友電気工業	増田 孝人
5. SM	MES開発の現状	中部電力	長屋 重夫
6. 超伝	云導変圧器に関する海外動向と日本における開発状況	九州大学	船木 和夫
7. ダイ	イオードブリッジ型限流器の開発現状	東芝	矢沢 孝
8. 薄膜	莫限流素子大電流化開発現状	三菱電機	下畑 賢司
第 62 回	超高感度磁気センサ SQUID を用いた実用システムの開発		
	平成17年11月8日(火) 商工会館		
1. 開会	☆の挨拶	研究会会長	太刀川 恭治
2. SQUI	ID 応用研究の現状	産業技術総合研究所	葛西 直子
3. HTS-	-SQUID(デバイスの現状と動向)	岩手大学	吉澤 正人
4. MCG	(心磁計)を用いた胎児心臓病診断と出生前治療	筑波大学	堀米 仁志
5. 高温	显超伝導 SQUID を用いた重イオンビーム計測・解析システム	理化学研究所	渡邉 環
6. SQUI	ID を用いた食品異物検査システム	住友電工ハイテックス	永石 竜起
7. 金属	属資源探査のための高温超伝導 SQUID を用いた TDEM 法装置(SQUITEM)の開発	石油天然ガス・金属鉱物資源機構	荒井 英一
8. 航空	E機搭載 SQUID システム	防衛庁	廣田 恵
9. 実用	用化システムのための超ワイドレンジ型 FLL 回路の開発	岩手大学	小林 宏一郎
10. 閉会	⋛の挨拶	未踏科学技術協会	木村 茂行

第63回 超伝導線材の微細組織制御と高Jc化		
平成18年3月6日(月) 日本化学会 化学会館		
1. 開会の挨拶	研究会会長	太刀川 恭治
2. 総論 1: Current-limiting mechanisms in high-performance YBCO coated conductors	University of Wisconsin	Alexander V. Gurevich
3. 総論 2: 超伝導体の組織制御と特性	物質・材料研究機構	戸叶 一正
4. 酸化物超伝導線材における微視的電流輸送特性	九州大学	木須 隆暢
5. 人工ピンニングセンター (APC) の導入	京都大学	松本 要
6. ビスマス系線材における微細組織制御と臨界電流特性	住友電工	林 和彦
7. Y-123線材における微細組織制御と臨界電流特性	超伝導工学研究所	和泉 輝郎
8. N b 3 A 1 線材における微細組織制御と臨界電流特性	物質・材料研究機構	竹内 孝夫
9. MgB2バルク・線材における微細組織制御と臨界電流特性	東京大学	下山 淳一
10. まとめ	物質・材料研究機構	熊倉 浩明
11. 閉会の挨拶	未踏科学技術協会	木村 茂行
第 64 回 新規超伝導物質の開発と室温超伝導への期待		
平成18年10月12日(木) 化学会館 501会議室		
1. はじめに	超伝導科学技術研究会	室町 英治
2. 薄膜ダイヤモンド超伝導体における新展開	物質・材料研究機構	高野 義彦
3. 3成分系金属リン化物の高圧合成と超伝導	室蘭工業大学	城谷 一民
4. 水和コバルト酸化物の超伝導と磁気秩序	物質・材料研究機構	櫻井 裕也
5. 完全終端した多層カーボンナノチューブにおける超伝導	青山学院大学	春山 純志
6. パイロクロア酸化物におけるラットリングと超伝導	東京大学	広井 善二
7. おわりに	未踏科学技術協会	木村 茂行
第 65 回 新規超伝導物質の開発と室温超伝導への期待		
平成18年12月7日(木) 日本化学会 化学会館 大会議室		
1. はじめに	超伝導科学技術研究会	室町 英治
2. 薄膜ダイヤモンド超伝導体における新展開	物質・材料研究機構	高野 義彦
3. 3成分系金属リン化物の高圧合成と超伝導	室蘭工業大学	城谷 一民
4. 水和コバルト酸化物の超伝導と磁気秩序	物質・材料研究機構	櫻井 裕也
5. 完全終端した多層カーボンナノチューブにおける超伝導	青山学院大学	春山 純志
6. パイロクロア酸化物におけるラットリングと超伝導	東京大学物性研究所	広井 善二
7. おわりに	未踏科学技術協会	木村 茂行

第 66 回 超伝導で極限を測る		
平成19年3月7日(水) 日本化学会 化学会館 会議室		
1. 開催趣旨説明	超電導工学研究所	日高 睦夫
2. 超伝導検出器の測定原理と世界の動向	東京大学	高橋 浩之
3. 超伝導転移端(TES)型 X 線マイクロカロリメータによる宇宙観測と地上応用	宇宙航空研究開発機構	満田 和久
4. ジョセフソン電圧標準とそのベンチャー展開	産業技術総合研究所	東海林 彰
5. SQUID 先端センシングシステムの開発動向	九州大学	円福 敬二
6. SQUID を用いた小動物生体磁気計測	早稲田大学	石山 敦士
7. 超伝導ミックスドシグナル処理技術の計測への展開	超電導工学研究所	鈴木 秀雄
8. 閉会の辞	未踏科学技術協会	木村 茂行
第 67 回 「SMES 開発の現状と負荷変動補償」及び SMES 見学会		
平成19年9月10日(木) 古河電工厚生会館「季潤舎」		
1. 挨拶	研究会会長	太刀川 恭治
2. 瞬低 SMES 開発結果および今後の計画	鹿児島大学	川越 明史
3. J-PARC 加速器電源への SMES の応用とその開発	高エネルギー加速器研究機構	佐藤 皓
4. 負荷変動補償 NEDO-SMES について	中部電力	
5. 古河日光発電㈱の紹介	古河電工	木村 昭夫